4763

Mark Scheme

PMT

June	2012	
------	------	--

Question		ion	Answer Marks		Guidance		
1	(iv)		$\mathbf{T} = \mathbf{M}^{\alpha} \mathbf{L}^{\beta} (\mathbf{M} \mathbf{L} \mathbf{T}^{-2})^{\gamma}$				
			$\gamma = -\frac{1}{2}$	B1	CAO		
			$\alpha + \gamma = 0, \beta + \gamma = 0$	M1	Considering powers of M or L		
			$\alpha = \frac{1}{2}, \beta = \frac{1}{2}$	A1A1	FT $\alpha = -\gamma$, $\beta = -\gamma$ (provided non-zero)		
			2 - 2	[4]			
1	(v)		$0.718 = k(8)^{\frac{1}{2}}(0.4)^{\frac{1}{2}}(125)^{-\frac{1}{2}}$ k = 4.4875	M1	Obtaining equation for <i>k</i>	Or using ratio and powers	
			$t = (4.4875)(75)^{\frac{1}{2}}(3)^{\frac{1}{2}}(20)^{-\frac{1}{2}}$	M1	Obtaining expression for new time	Or $\times \left(\frac{75}{8}\right)^{\frac{1}{2}} \times \left(\frac{3}{0.4}\right)^{\frac{1}{2}} \times \left(\frac{20}{125}\right)^{-\frac{1}{2}}$	
			New time is 15.1 s (3 sf)	A1	CAO No penalty for using $b = 1.2$ and $b = 9$		
			D 100, 000, 00, (D 0010)	[3]			
2	(a)	(i)	$R\cos 18^\circ = 800 \times 9.8$ ($R = 8243$)	M1 M1	Resolving vertically Horizontal equation of motion	Might also include <i>F</i> Might also include <i>F</i>	
			$R\sin 18^\circ = 800 \times \frac{v^2}{45}$	A1			
			$\tan 18^\circ = \frac{v^2}{45 \times 9.8}$				
			Speed is $12.0 \mathrm{ms^{-1}}$ (3 sf)	A1			
				[4]			
2	(a)	(ii)	$R\cos 18^\circ = F\sin 18^\circ + 800 \times 9.8$	M1 A1	Resolving vertically (three terms)		
			$r_{c0510} = r_{51110} \pm 000 \times 9.0$	M1	Horizontal equation (three terms)		
			$R\sin 18^\circ + F\cos 18^\circ = 800 \times \frac{15^2}{45}$	A1			
				M1	Obtaining a value for F or R	Dependent on previous M1M1	
			Frictional force is 1380 N (3 sf)	A1			
			Normal reaction is 8690 N (3 sf)	A1 [7]			

June	2012
------	------

Question		Answer	Marks	Guidanc	nce	
2	(b)		M1	Equation involving KE and PE	h = 2.1 implies M1 a is length of the string	
		$\frac{1}{2}m(7^2 - 2.8^2) = mg(a + a\cos\theta)$ $a(1 + \cos\theta) = 2.1$	A1	Correct equation involving a and θ	(Might use angle with downward vertical or horizontal)	
			M1	Radial equation of motion	Might also involve T	
		$mg\cos\theta = m \times \frac{2.8^2}{a}$ $a\cos\theta = 0.8$	A1	Correct equation involving a and θ		
		Length of string is 1.3 m	M1 A1	Eliminating θ or a	Dependent on previous M1M1	
		Angle with upward vertical is 52.0° (3 sf)	A1 [7]		A0 for 128° or 38°	
3	(i)	$\dot{x} = -A\omega\sin(\omega t - \phi)$	B1			
		$\ddot{x} = -A\omega^2 \cos(\omega t - \phi)$	M1	Obtaining second derivative	Allow one error	
		$\ddot{x} = -\omega^2 (x - c)$	E1	Correctly shown		
			[3]			
3	(ii)	c = 10 $A = 6$	B1 B1	Accept $A = -6$		
		$\frac{2\pi}{\omega} = 10$	M1	Using $\frac{2\pi}{\omega}$	Or other complete method for finding ω	
		$\omega = \frac{\pi}{5}$	A1	Accept $\omega = -\frac{\pi}{5}$	Allow $\frac{2\pi}{10}$ etc	
		$x = 16$ when $t = 3 \implies 3\omega - \phi = 0$	M1	Obtaining simple relationship between ϕ and ω . NB $\phi = 3$ is M0	Or $x = 10 + 6\cos\{\frac{\pi}{5}(t-3)\}$	
		$\phi = \frac{3\pi}{5}$	A1	NB other values possible If exact values not seen, give A0A1 for both $\omega = 0.63$ and $\phi = 1.9$	e.g. $\phi = -\frac{7\pi}{5}$, $\phi = \frac{13\pi}{5}$, $x = 10 - 6\cos(\frac{\pi}{5}t - \frac{8\pi}{5})$ etc	
			[6]	Max 5/6 if values are not consistent		

⁴⁷⁶³

4763

June	2012
------	------

C	Quest	ion	Answer	Marks	s Guidance	
3	(iii)		Maximum speed is $A\omega$	M1	Or e.g. evaluating \dot{x} when $t = 5.5$	
			Maximum speed is $\frac{6\pi}{5}$ or 3.77 ms ⁻¹ (3 sf)	A1	FT is $ A\omega $ (must be positive)	
				[2]		
3	(iv)		When $t = 0$, height is 8.15 m (3 sf)	B1	FT is $c + A\cos\phi$ (provided $4 < x < 16$)	Must use radians
			$v = -\frac{6\pi}{5}\sin(\frac{\pi t}{5} - \frac{3\pi}{5})$	M1	Or $v^2 = \left(\frac{\pi}{5}\right)^2 (6^2 - 1.854^2)$	Allow one error in differentiation
			When $t = 0$, velocity is 3.59 m s^{-1} (3 sf)	A1	FT is $A\omega\sin\phi$ (must be positive)	$(\phi = 3 \text{ gives } x = 4.06, v = 0.532)$
				[3]		
3	(v)		When $t = 0$, $x = 8.146$			
			When $t = 14$, $x = 14.854$	M1	Finding <i>x</i> when $t = 14$	Correct (FT) value, or evidence of substitution, required $(\phi = 3 \text{ gives } x = 15.3)$
				M1	(16-14.854) used	Requires $4 < x(14) < 16$
			(16 - 8.146) + 12 + 12 + (16 - 14.854)	M1	Fully correct strategy	Also requires $4 < x(0) < 16$
			Distance is 33 m	A1	САО	
				[4]		

4763

June 2012

Question	Answer	Marks	Guidance	9
4 (a)	$A = \int_0^9 (3 - \sqrt{x}) \mathrm{d}x$	M1		
	$= \left[3x - \frac{2}{3}x^{\frac{3}{2}} \right]_{0}^{9} (=9)$	A1	For $3x - \frac{2}{3}x^{\frac{3}{2}}$	
	$A\overline{x} = \int xy\mathrm{d}x = \int_0^9 x(3-\sqrt{x})\mathrm{d}x$	M1	For $\int xy dx$	
	$= \left[\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} \right]_0^9 (= 24.3)$	A1	For $\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}}$	
	$\overline{x} = \frac{24.3}{9} = 2.7$	A1		
	$A \overline{y} = \int \frac{1}{2} y^2 dx = \int_0^9 \frac{1}{2} (3 - \sqrt{x})^2 dx$	M1	For $\int \dots y^2 dx$	Or $\int_{(0)}^{(3)} (3-y)^2 y dy$
		M1	Expanding (three terms) and integrating (allow one error)	
	$= \left[\frac{9}{2}x - 2x^{\frac{3}{2}} + \frac{1}{4}x^2 \right]_0^9 (= 6.75)$	A1	For $\frac{9}{2}x - 2x^{\frac{3}{2}} + \frac{1}{4}x^2$	Or $\frac{9}{2}y^2 - 2y^3 + \frac{1}{4}y^4$
	$\overline{y} = \frac{6.75}{9} = 0.75$	A1		
		[9]		

4763

June	2012
------	------

G	Quest	ion	Answer	Marks	Guidance	9
4	(b)	(i)	$V = \int_2^5 \pi (25 - x^2) \mathrm{d}x$	M1	For $\int \dots (25-x^2) dx$	
			$=\pi \left[25x - \frac{1}{3}x^3 \right]_2^5 \ (=36\pi)$	A1	For $25x - \frac{1}{3}x^3$	
			$V \overline{x} = \int \pi x y^2 dx = \int_2^5 \pi x (25 - x^2) dx$	M1	For $\int xy^2 dx$	
			$=\pi \left[\frac{25}{2}x^2 - \frac{1}{4}x^4 \right]_2^5 (=\frac{441\pi}{4})$	A1	For $\frac{25}{2}x^2 - \frac{1}{4}x^4$	
			$\overline{x} = \frac{\frac{441}{4}\pi}{36\pi} = \frac{49}{16} (=3.0625)$	A1	Accept 3.1 from correct working	
				[5]		
4	(b)	(ii)	ο 5 25 0 	M1 M1	CG is vertical (may be implied) Using triangle OGC or equivalent	Lenient, if CG drawn. Needs to be quite accurate if CG not drawn
			$\frac{\sin\theta}{5} = \frac{\sin 25^{\circ}}{\overline{x}}$	M1		
			$\theta = 43.6^{\circ}$	A1	Accept art 43° or 44° from correct work FT is $\sin^{-1}\left(\frac{2.113}{\overline{x}}\right)$	Provided 2.113 < \overline{x} < 5
				[4]		