Question			Answer$\begin{aligned} & \mathrm{T}=\mathrm{M}^{\alpha} \mathrm{L}^{\beta}\left(\mathrm{MLT}^{-2}\right)^{\gamma} \\ & \gamma=-\frac{1}{2} \\ & \alpha+\gamma=0, \quad \beta+\gamma=0 \\ & \alpha=\frac{1}{2}, \quad \beta=\frac{1}{2} \end{aligned}$	Marks B1 M1 A1A1 [4]	Guidance	
1	(iv)				CAO Considering powers of M or L FT $\alpha=-\gamma, \beta=-\gamma \quad$ (provided non-zero)	
1	(v)		$\begin{aligned} & \begin{array}{l} 0.718=k(8)^{\frac{1}{2}}(0.4)^{\frac{1}{2}}(125)^{-\frac{1}{2}} \\ \quad k=4.4875 \end{array} \\ & t=(4.4875)(75)^{\frac{1}{2}}(3)^{\frac{1}{2}}(20)^{-\frac{1}{2}} \\ & \text { New time is } 15.1 \mathrm{~s} \quad(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	Obtaining equation for k Obtaining expression for new time CAO No penalty for using $b=1.2$ and $b=9$	Or using ratio and powers $\text { Or } \times\left(\frac{75}{8}\right)^{\frac{1}{2}} \times\left(\frac{3}{0.4}\right)^{\frac{1}{2}} \times\left(\frac{20}{125}\right)^{-\frac{1}{2}}$
2	(a)	(i)	$\begin{aligned} & R \cos 18^{\circ}=800 \times 9.8 \quad(R=8243) \\ & R \sin 18^{\circ}=800 \times \frac{v^{2}}{45} \\ & \tan 18^{\circ}=\frac{v^{2}}{45 \times 9.8} \\ & \text { Speed is } 12.0 \mathrm{~ms}^{-1} \quad(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 A1 [4]	Resolving vertically Horizontal equation of motion	Might also include F Might also include F
2	(a)	(ii)	$\begin{aligned} & R \cos 18^{\circ}=F \sin 18^{\circ}+800 \times 9.8 \\ & R \sin 18^{\circ}+F \cos 18^{\circ}=800 \times \frac{15^{2}}{45} \\ & \text { Frictional force is } 1380 \mathrm{~N} \quad(3 \mathrm{sf}) \\ & \text { Normal reaction is } 8690 \mathrm{~N} \quad(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [7] } \\ & \hline \end{aligned}$	Resolving vertically (three terms) Horizontal equation (three terms) Obtaining a value for F or R	Dependent on previous M1M1

Question		Answer	Marks	Guidance	
2	(b)	$\begin{aligned} & \frac{1}{2} m\left(7^{2}-2.8^{2}\right)=m g(a+a \cos \theta) \\ & \quad a(1+\cos \theta)=2.1 \\ & m g \cos \theta=m \times \frac{2.8^{2}}{a} \\ & a \cos \theta=0.8 \end{aligned}$ Length of string is 1.3 m Angle with upward vertical is 52.0°	M1 A1 M1 A1 M1 A1 A1 [7]	Equation involving KE and PE Correct equation involving a and θ Radial equation of motion Correct equation involving a and θ Eliminating θ or a	$h=2.1$ implies M1 a is length of the string (Might use angle with downward vertical or horizontal) Might also involve T Dependent on previous M1M1 A0 for 128° or 38°
3	(i)	$\begin{align*} & \dot{x}=-A \omega \sin (\omega t-\phi) \tag{3sf}\\ & \ddot{x}=-A \omega^{2} \cos (\omega t-\phi) \\ & \ddot{x}=-\omega^{2}(x-c) \end{align*}$	B1 M1 E1 [3]	Obtaining second derivative Correctly shown	Allow one error
3	(ii)	$\begin{aligned} & C=10 \\ & A=6 \\ & \frac{2 \pi}{\omega}=10 \\ & \omega=\frac{\pi}{5} \\ & x=16 \text { when } t=3 \Rightarrow 3 \omega-\phi=0 \end{aligned}$ $\phi=\frac{3 \pi}{5}$	B1 B1 M1 A1 M1 A1 [6]	Accept $A=-6$ Using $\frac{2 \pi}{\omega}$ Accept $\omega=-\frac{\pi}{5}$ Obtaining simple relationship between ϕ and ω. $\quad N B \quad \phi=3$ is $M 0$ NB other values possible If exact values not seen, give A0A1 for both $\omega=0.63$ and $\phi=1.9$ Max 5/6 if values are not consistent	Or other complete method for finding ω Allow $\frac{2 \pi}{10}$ etc Or $x=10+6 \cos \left\{\frac{\pi}{5}(t-3)\right\}$ e.g. $\phi=-\frac{7 \pi}{5}, \phi=\frac{13 \pi}{5}$, $x=10-6 \cos \left(\frac{\pi}{5} t-\frac{8 \pi}{5}\right)$ etc

Question		Answer	Marks	Guidance	
3	(iii)	Maximum speed is $A \omega$ Maximum speed is $\frac{6 \pi}{5}$ or $3.77 \mathrm{~ms}^{-1} \quad(3 \mathrm{sf})$	M1 A1 [2]	Or e.g. evaluating \dot{x} when $t=5.5$ FT is $\|A \omega\| \quad$ (must be positive)	
3	(iv)	When $t=0$, height is $8.15 \mathrm{~m} \mathrm{(3} \mathrm{sf)}$ $v=-\frac{6 \pi}{5} \sin \left(\frac{\pi t}{5}-\frac{3 \pi}{5}\right)$ When $t=0$, velocity is $3.59 \mathrm{~ms}^{-1} \quad(3 \mathrm{sf})$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	FT is $c+A \cos \phi \quad$ (provided $4<x<16$) Or $v^{2}=\left(\frac{\pi}{5}\right)^{2}\left(6^{2}-1.854^{2}\right)$ FT is $A \omega \sin \phi \quad$ (must be positive)	Must use radians Allow one error in differentiation ($\phi=3$ gives $x=4.06, v=0.532$)
3	(v)	When $t=0, x=8.146$ When $t=14, \quad x=14.854$ $(16-8.146)+12+12+(16-14.854)$ Distance is 33 m	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	Finding x when $t=14$ (16-14.854) used Fully correct strategy CAO	Correct (FT) value, or evidence of substitution, required ($\phi=3$ gives $x=15.3$) Requires $4<x(14)<16$ Also requires $4<x(0)<16$

Question			Answer$\left.\begin{array}{rl} V & =\int_{2}^{5} \pi\left(25-x^{2}\right) \mathrm{d} x \\ & =\pi\left[25 x-\frac{1}{3} x^{3}\right]_{2}^{5} \quad(=36 \pi) \\ V & \bar{x} \end{array}=\int \pi x y^{2} \mathrm{~d} x=\int_{2}^{5} \pi x\left(25-x^{2}\right) \mathrm{d} x\right)$	Marks M1 A1 M1 A1 A1 [5]	Guid	
4	(b)	(i)			For $\int \ldots\left(25-x^{2}\right) \mathrm{d} x$ For $25 x-\frac{1}{3} x^{3}$ For $\int x y^{2} \mathrm{~d} x$ For $\frac{25}{2} x^{2}-\frac{1}{4} x^{4}$ Accept 3.1 from correct working	
4	(b)	(ii)	$\begin{aligned} \frac{\sin \theta}{5} & =\frac{\sin 25^{\circ}}{\bar{x}} \\ \theta & =43.6^{\circ} \end{aligned}$	M1 M1 M1 A1 [4]	CG is vertical (may be implied) Using triangle OGC or equivalent Accept art 43° or 44° from correct work FT is $\sin ^{-1}\left(\frac{2.113}{\bar{x}}\right)$	Lenient, if CG drawn. Needs to be quite accurate if CG not drawn Provided $2.113<\bar{x}<5$

